The realization space is [1 1 x1^2 - x1 - 1 0 0 1 1 x1^3 - 2*x1^2 + 1 0 x1 - 1 1] [1 0 x1^2 - x1 1 0 1 0 x1^3 - 2*x1^2 + x1 1 x1 x1] [0 0 0 0 1 1 x1^2 - x1 x1^3 - x1^2 - x1 x1 - 1 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^18 - 10*x1^17 + 41*x1^16 - 86*x1^15 + 89*x1^14 - 21*x1^13 - 41*x1^12 + 31*x1^11 - 4*x1^9) avoiding the zero loci of the polynomials RingElem[x1, x1 - 2, x1 - 1, x1^2 - x1 - 1, 2*x1 - 3, x1^3 - 2*x1^2 + x1 - 1, x1^4 - 2*x1^3 - 2*x1^2 + 5*x1 - 1, x1 + 1, x1^2 - 2]